Hyperfine anomaly measurements in Francium

Robert Collister FrPNC Collaboration

December 5, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overview

- Francium trapping facility
- Francium trapping November 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Hyperfine anomaly
- Isotope Shift

- Francium trapping facility in ISAC I located beneath TITAN platform
- Magneto-optical trap to cool & collect atoms for further experiments

Upper trap chamber, commisioned September 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Upper trap (before optics)

- 3

Upper trap (after optics)

Francium trapping

► Trapped isotopes: ²⁰⁶Fr,²⁰⁷Fr,²⁰⁹Fr,²¹³Fr

206Fr	207Fr	208Fr	209Fr	210Fr	211Fr	212Fr	213Fr
≈16 S	14.8 S	59.1 S	50.5 S	3.18 M	3.10 M	20.0 M	34.82 S
ຝສ 84.00%	α: 95.00%	ຝ: 89.00%	a: 89.00%	ຝ: 71.00%	a: 87.00%	€: 57.00%	α: 99.44%
€ສ 16.00%	ε: 5.00%	€: 11.00%	€: 11.00%	€: 29.00%	c: 13.00%	α: 43.00%	ε: 0.56%

Pulsed trap, cycle based on Y heating

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hyperfine anomaly

- Bohr-Weisskopf effect shifts atomic energy levels due to nuclear magnetization distribution
- Probe transition to P_{1/2} level (no electric quadrupole contribution)

- Grossman et al., PRL 83, 935-938 (1999)
 - ▶ isotopes ²⁰⁸Fr to ²¹²Fr
- ▶ ²¹³Fr neutron shell closure
- ²⁰⁷Fr neutron deficient, away from single-particle model?
- Will contribute to better understanding of neutron radius of francium isotopes to be used for eventual parity non-conservation measurements

Hyperfine anomaly

- Trap and repump francium on 7P_{3/2} transition
- Probe laser set close to midpoint of hyperfine 7P_{1/2} states
- Sidebands on laser through fiber modulator at set frequency
- Sideband frequency swept quickly, reproducibly

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Hyperfine anomaly

Scan

- ► 10 ms scans cover \approx 140 MHz
- Peak separation = 2 x probe detuning
- Sum of peak frequencies
 = hyperfine splitting

$7S_{1/2}$ to $7P_{1/2}$ isotope shift

 Isotope shift caused by change in charge radius (mass difference small for heavy nuclei)

- Relative measurements made with respect to ²⁰⁹Fr
- Kept laser locked from HFA measurement, change RF sideband frequency

- ► Trap light chopped ~10:1 on/off
- detailed comparison with known 7S_{1/2} to 7P_{3/2} (Coc et al.
 PLB, '85) may give info on atomic wavefunction overlap with nucleus

Conclusion and Outlook

In conclusion:

- ²⁰⁶Fr, ²⁰⁷Fr, ²¹³Fr splittings measured for 7P_{1/2}
- Isotope shifts for same
- Next:
 - More analysis: systematics, Rb measurements
 - ▶ more ²⁰⁶Fr, lighter isotopes, possibly ²²¹Fr
 - Working towards parity non-conservation measurement

Acknowledgements

The FrPNC collaboration:

S. Aubin¹, J.A. Behr², R. Collister³, E. Gomez⁴, G. Gwinner³, L. A. Orozco⁵, M.R. Pearson², M. Tandecki^{2,3}, J. Zhang⁵

¹College of William and Mary, ² TRIUMF, ³ University of Manitoba, ⁴ Universidad Autónoma de San Luis Potosí, ⁵ University of Maryland

Work supported by **TRIUMF**, **NRC**, **NSERC** of Canada, **NSF** and **DOE** of USA and **CONACYT** of Mexico.

Many thanks to support staff at TRIUMF.